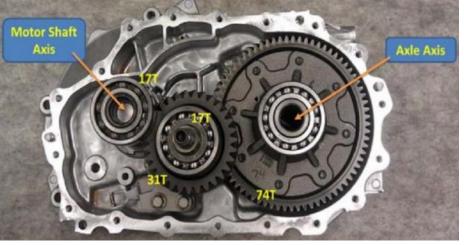


Introduction to Gears

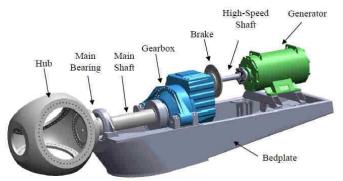
Dr Hengan Ou


Coates B80a <u>h.ou@nottingham.ac.uk</u>

Why gears?

MB CLK, automatic transmission An earlier version of Nissan

Leaf Gearbox



Geared turbofan for new type of aeroengine

Automotive differential unit

Modular drive train configuration <u>http://www.nrel.gov/wind/</u>

Vestas V90-3MW wind turbine http://www.vestas.com/en

Gears related Lecture sessions

- **<u>Gears 1</u>** Introduction to gears
 - Functions & types
 - Gear fundamentals, terminologies & conjugate action
 - Involute profile, fundamental equations, tooth system
- **<u>Gears 2</u>** Gear trains and their applications
 - Simple train and compound train
 - Planetary train
 - Differential unit
 - Applications
- **Gears 3** Gear stress analysis & design
 - Common forms of gear failure
 - Gear force analysis
 - AGMA based gear design calculations

Learning objectives

- To be familiar with **different gear types** for different applications
- To understand gear fundamentals and to be familiar with gear terminology
- To be able to determine **gear ratios** and to design different **gear trains**
- To be able to determine **AGMA bending and contact stresses** of spur gears
- To understand the working mechanisms of gear systems in applications

To understand gear fundamentals and to be able to design and evaluate a gear system for specific applications.

Notes: topics on **gear manufacturing** will not be covered.

Ouline of Gears 1

Introduction to gears

- Part 1: Functions & types of gears
 - Gear terminologies

Part 2: – Involute tooth profile

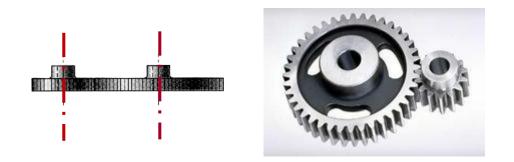
- Concept of conjugate action
- Gear ratio equation and tooth system

Part 3: – A few worked examples

Functions and types

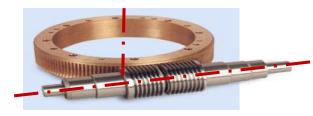
Functions:

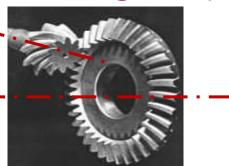
- Transmission of power or motion between two shafts
- Most rugged and durable means of power transmission
- High transmission efficiency


Classification of gear types:

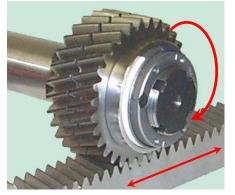
- Gears between **parallel shafts**, e.g. spur & helical gears
- Gears between intersecting shafts, e.g. bevel gears
- Gears between nonparallel & non-intersecting shafts,
 e.g. worm gears, hypoid gears

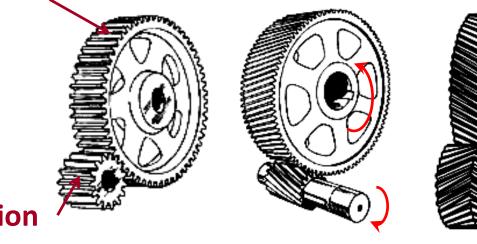
Gear types

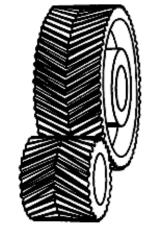

- 1. Parallel axis gears
 - Spur gears
 - Helical gears
 - Internal gears

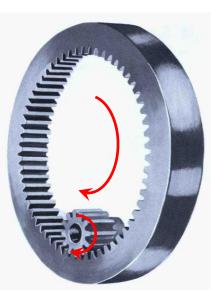


- 2. Non-parallel axis, coplanar gears (intersecting axes)
 - Bevel gears
 - Face gears
 - Conical involute gears


- 3. Non-parallel axis, non-coplanar gears (non-intersecting axes)
 - Worm gears
 - Hypoid gears


Spur, helical and herringbone gears (between parallel shafts)


- **Spur:** tooth members parallel to shaft axes
- Helical: tooth members cut with an inclined angle to shaft axes, allowing smoother and quieter meshing but with an axial load generated

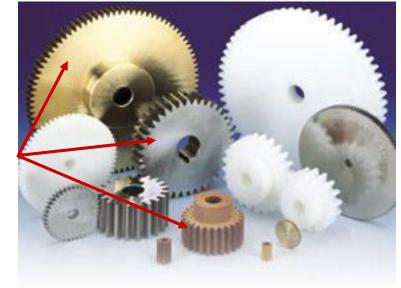


Rack and pinion

Gear or wheel

Pinion

Spur gears


s Helical gears

Herringbone gears (double helical gears)

Internal gear meshing

Spur gears (between parallel shafts)

- Most common type of gears
- Cheaper to manufacture
- Generate more noise
- Smaller number of teeth in contact at any given time
- Sensitive to alignment

Different materials

Helical gears (between parallel shafts)

- Teeth cut with an inclined angle to the axis of rotation
- Contact between two teeth more progressive and longer is less noisy and carries higher loads
- Can be mounted at right angles if cut at appropriate angle
- Herringbone (double helical) gears cancel out the trust in helical gears & allow smoother power transmission at high speed

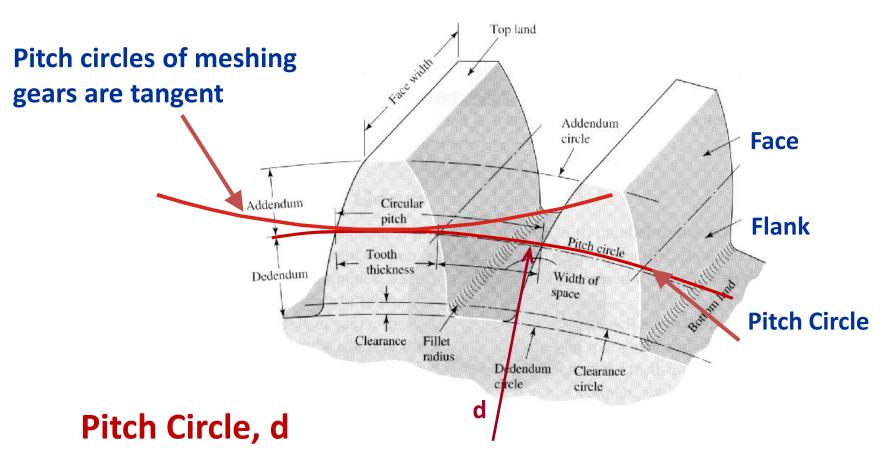
Bevel gears (between intersecting shafts)^{Gears 1 Part 1}

- Straight: ordinary tooth profile but formed on conical surfaces,
 different intersecting angles may be possible
- Spiral: similar to helical gears with more gradual meshing

Worm gears (between non-parallel & noninteracting shafts)

- Essentially a screw meshing with a special helical gear to provide high reduction ratio but with lower efficiency due to high sliding velocity,

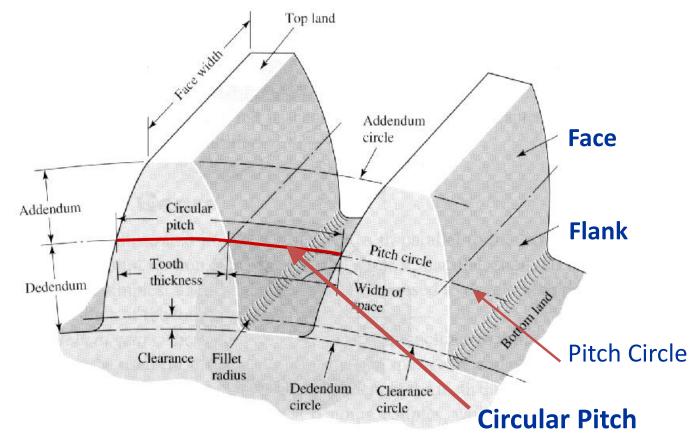
SW based animation of different gear types in operation



Note: SW assembly models of different gear types are available on Moodle

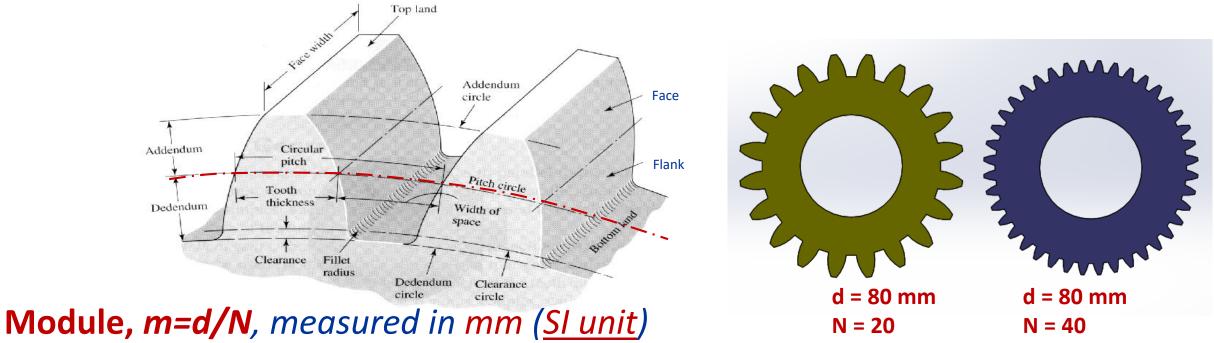
Gear terminologies

Gears 1 Part 1


(for design evaluation, e.g. gear ratios & motion, load carrying capability & performance)

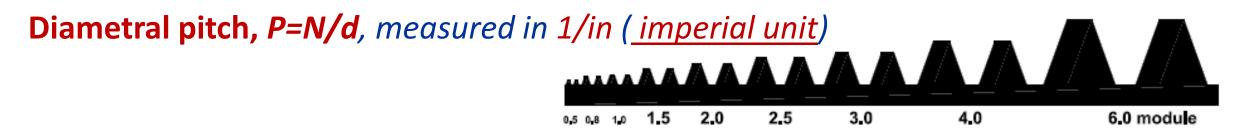
- Theoretical circle upon which all calculations are based
- Has a pitch diameter = d

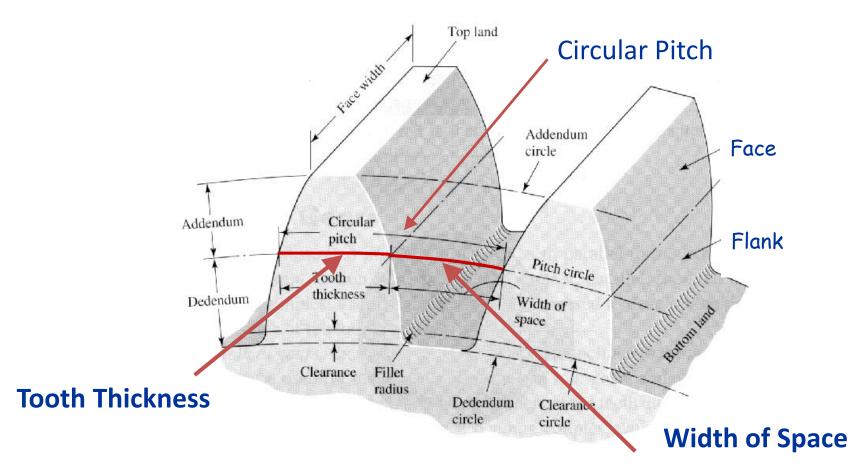
Gears 1 Part 1


Gear terminology

Circular Pitch, *p*=π*d*/*N*

- The distance between a point on a tooth and the same point on the adjacent tooth
- Measured on the pitch circle


Gear terminology

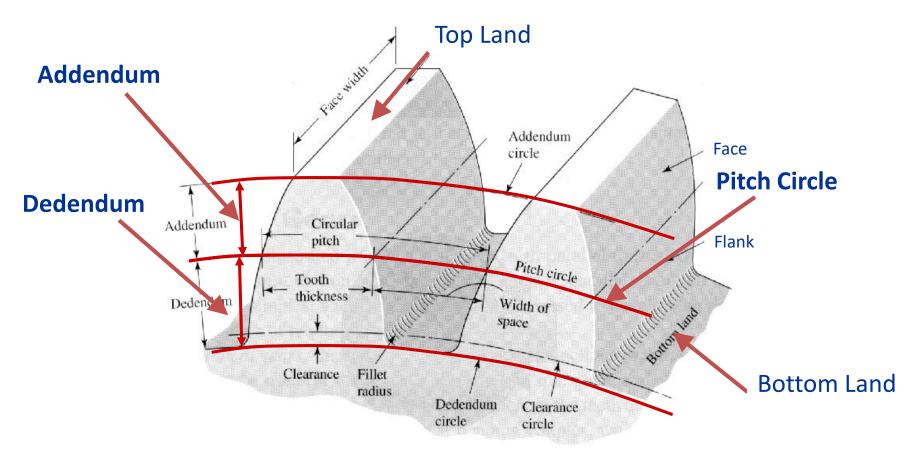

Gears 1 Part 1

m = d/N = 4 mm m = d/N = 2 mm

- The ratio of the pitch diameter \boldsymbol{d} to the number of teeth \boldsymbol{N}
- Also circular pitch, $p = \pi d/N = \pi m$
- *m* represents is the size of gear tooth & is standardised

Gear terminology

Tooth Thickness, $t=p/2=\pi m/2$


- Thickness of the gear tooth
- Measured on the pitch circle

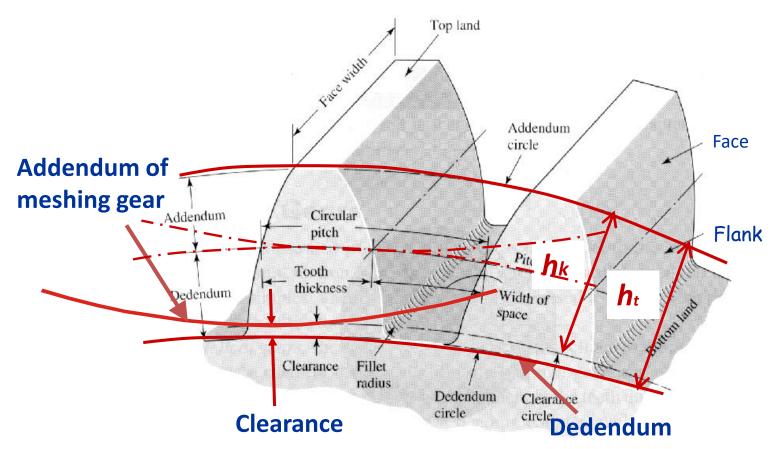
Width of Space $=p/2 = \pi m/2$

- Distance between gear teeth
- Measured on the pitch circle

Gears 1 Part 1

Gear terminology

Addendum, **a** = **m**


- Radial distance between the pitch circle and the top land
- Defined by Addendum Circle

Dedendum, *b* = 1.25*m*

-Radial distance between the pitch circle and the bottom land-Defined by Dedendum Circle

Gears 1 Part 1

Gear terminology

Clearance, *c=0.25m (=b-a)*

- Radial distance between the dedendum circle and the addendum circle of the meshing gear

Whole depth, *ht=a+b=2.25m* Working depth, *hk=a+b-c=2.0m*

Quiz 1: True or False to each of the following statements Gears 1

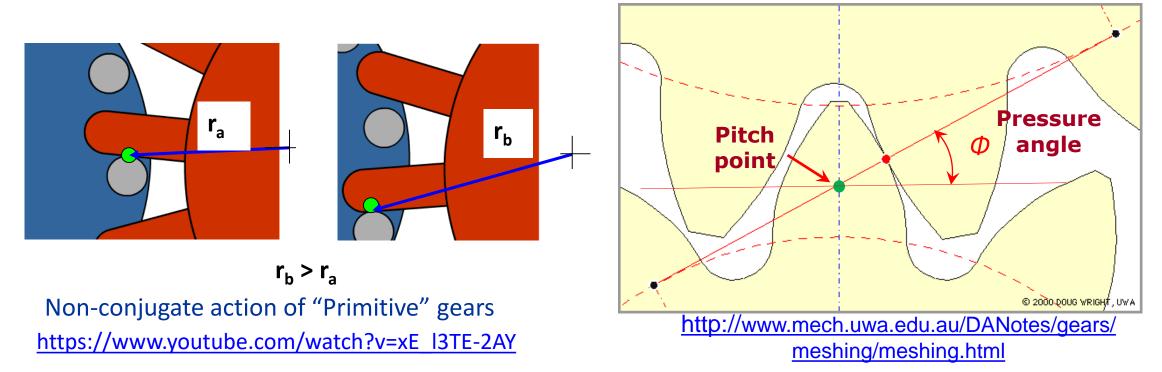
- A. The directions of rotation of two external helical gears are opposite to each other.
- **B.** Bevel gears can be used for power transmission between two nonparallel and non-intersecting shafts
- C. Module (*m*) is a fundamental parameter to specify tooth size defined by the ratio of pitch diameter(*d*) and number of teeth (N), i.e. *m*=*d*/*N*
- **D.** The Tooth thickness and Width of space are equal only on the pitch circle.
- E. The Working depth (*h_k*) of a gear is the sum of Addendum (*a*) and Dedendum (*b*)

Quiz 1: True or False to each of the following statements Gears 1

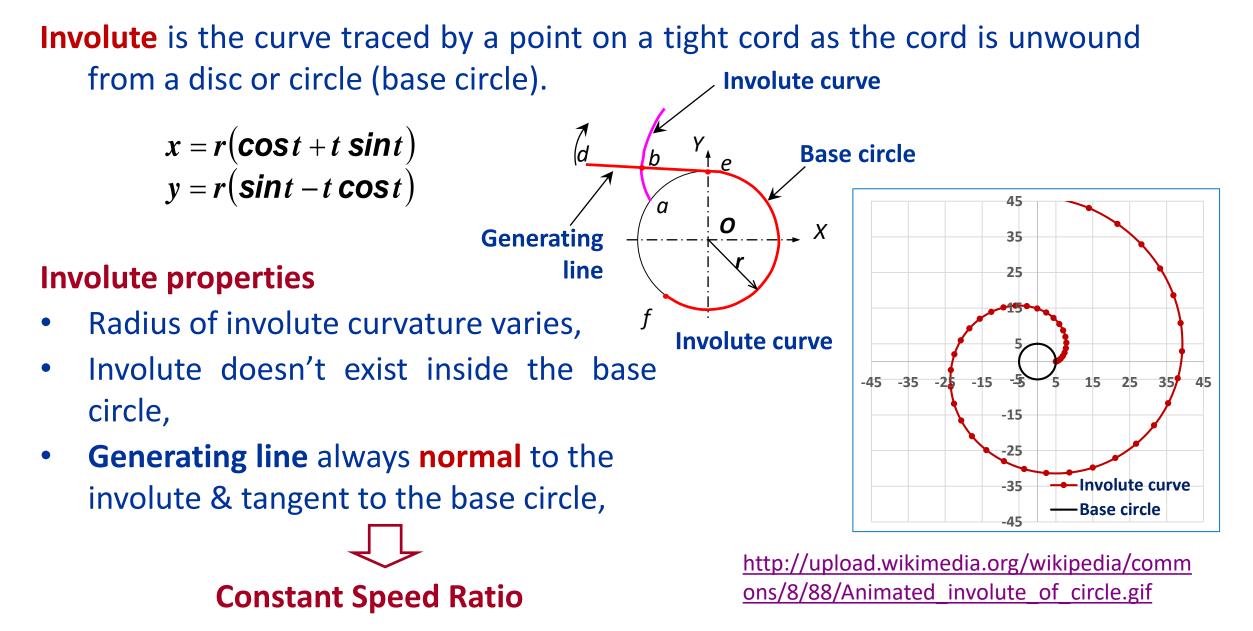
- A. The directions of rotation of two external helical gears are opposite to each other. (true)
- B. Bevel gears can be used for power transmission between two nonparallel and non-intersecting shafts <u>(false)</u>
- C. Module (*m*) is a fundamental parameter to specify tooth size defined by the ratio of pitch diameter(*d*) and number of teeth (N), i.e. m=d/N (true)
- D. Tooth thickness and Width of space are equal only on pitch circle. (true)
- E. The Working depth (*h_k*) of a gear is the sum of Addendum (*a*) and (false) Dedendum (*b*)

Gears 1

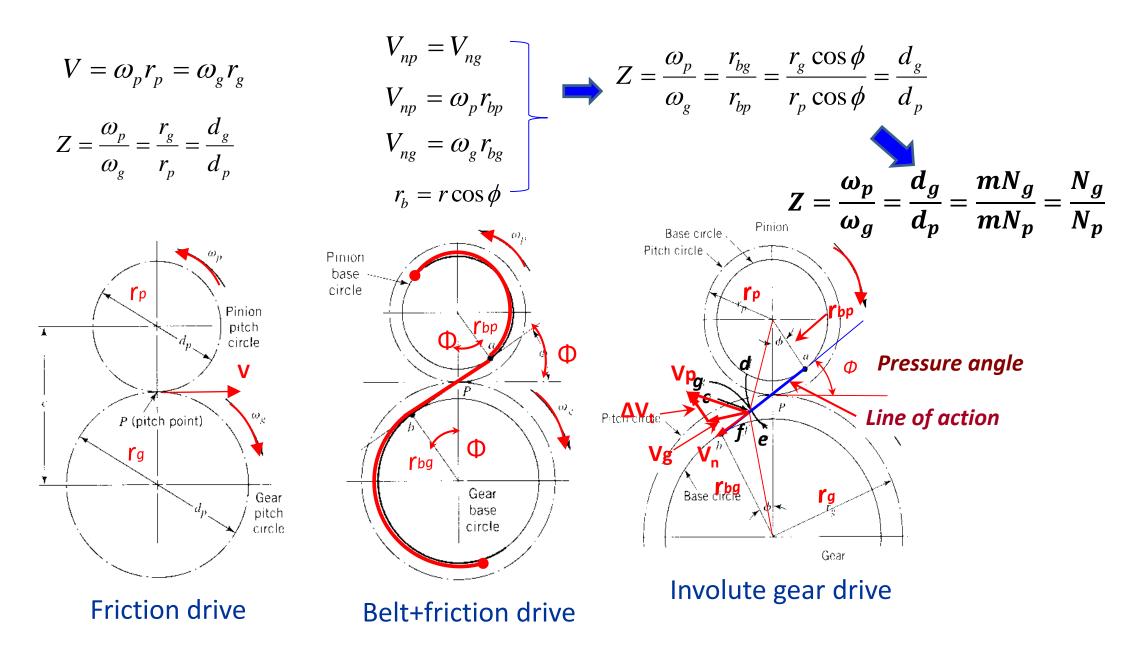
End of Part 1



Gears 1


Part 2

Gear working mechanism: Conjugate action


- **Definition:** When tooth profiles are designed to produce a constant angular-velocity ratio during meshing are said to have <u>conjugate action</u>.
 - The common normal to the surfaces at the point of contact always intersects the line of centres at the same <u>Pitch Point, P.</u>
 - The point of contact moves along the **line of action**, tangent to the **base circles**.
 - The **line of action** is always normal to the tooth profile at the point of contact.

Gear tooth profile: Involute curve

Gear ratio equation

Fundamental equations

Pitch diameter: (SI unit) d = mN

Gear ratio (Z):
$$Z = \frac{\omega_1}{\omega_2} = \frac{d_2}{d_1} = \frac{N_2}{N_1}$$

Pressure angle, *\overline \phi*, is another fundamental parameter

Gears 1 Part 2

The necessary and sufficient conditions of proper meshing:

$$m_1 = m_2, \quad \phi_1 = \phi_2$$

where, subscripts 1 & 2 are used to denote Pinion & Gear, respectively.

Note: $\phi = 20^{\circ}$ is the most commonly used pressure angle ($\phi = 14.5^{\circ}$ is another option)

Important parameters for a pair of spur gears: $m, \emptyset and N_1, N_2$

Centre distance (C):
$$C = \frac{m}{2}(N_1 + N_2)$$

Minimum number of teeth for standard gears with $\phi = 20^{\circ}$ is 18.

Gear geometry equations

Formulas of gear geometry				
Circular pitch, p	$p = \pi m \text{ (mm)}$	Working depth, h _k	$h_k = a + b - c = 2.0m$	
Pitch diameter, D	$D = \underline{mN}$ (mm)	Base circle diameter, D_b	$D_b = D \cos \phi$	
Addendum, a	<i>a=1m</i> ^{a)}	Outside diameter, D _	$D_o = D + 2a$	
Dedendum, b	b=1.25m ^{a)}	Root diameter, D_r	$D_r = D - 2b$	
Clearance, <i>c</i>	c=b-a = 0.25m ^{a)}	Central distance, C	$C = \frac{m}{2}(N_1 + N_2)$	
Whole depth, <i>h</i> _t	$h_t = a + b = 2.25m$	Tooth Thickness, <i>t</i>	$t = \frac{\pi}{2}m$	
a) Referring to standard and commonly used tooth systems for spur gears				

A simple example

For a pair of spur gears with the module of *m=3 mm*, the numbers of teeth for the pinion and the gear are *N1=20* and *N2=35*, respectively. The pressure angle is 20°. Determine the parameters of both the **pinion and gear**.

Calculation of pinion parameters (unit in mm)				
Pitch diameter, D	<u>D=mN1=3x20=60</u>	Working depth, <i>h_k</i>	h _k =a+b-c=2.0m=2x3=6	
Circular pitch, p	<i>P=π</i> m=3.1416x3=9.425	Base circle diameter, <i>D_b</i>	$D_b = D\cos\phi = 60x\cos 20^\circ = 56.382$	
Addendum <i>, a</i>	a=1m=1x3=3	Outside diameter, <i>D_o</i>	D _o =D+2a=60+2x3=66	
Dedendum, b	b=1.25m=1.25x3=3.75	Root diameter, <i>D</i> _r	D _r =D-2b=60-2x3.75=52.5	
Clearance <i>, c</i>	c=b-a=0.25m=0.25x3=0.75	Central distance, C	<u>C=1/2m(N₁+N₂)=0.5x3(20+35)=82.5</u>	
Whole depth, <i>h</i> _t	h _t =a+b=2.25m=2.25x3=6.75	Tool thickness, <i>t</i>	t=1/2πm=0.5x3.1416x3=4.7124	

Gear Tooth Systems

A tooth system is a standard to specify gear tooth geometry. The standard is used to attain interchangeability of gears of all tooth numbers of the same **Pressure Angle** (ϕ) and **Module** (*m*), as shown in the Table.

Key parameters of spur gears are

m, *N*, *φ* (either 20° or 14.5°)

•Tooth sizes in General Uses (SI system) (BS ISO 54:1996)

Module, $(m) - SI$ unit (mm)		
	0.5, 0.8, 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40, 50	
Next choice	1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5, 5.5, 7, 9, 11, 14, 18, 36, 45	

Summary

- Understand the main function and different types of gears as well as how gear systems are classified;
- Be familiar with gear terminologies and be able to determine gear ratio and key parameters with a given simple gear train (system);
- Understand the concepts of Involute profile, conjugate action, gear tooth system and fundamental requirement for proper gear meshing.

Revision questions

- How are different types of gears classified?
- Can you name a few specific forms of gears between two parallel shafts?
- How do you know the pitch diameter (d) of a gear with given Module (m) and Number of teeth (N)?
- What are the key characteristics of **conjugate action** in gear meshing?
- What are the key parameters in gear design?
- What are the **necessary and sufficient conditions** for a pair of gears meshing properly?
- Why is it useful to have **Gear tooth system** in practice?
- What is the **gear ratio equation** of a pair of gears?

Gears references and resources

- R.G. Budynas and J.K. Nisbett, Shigley's Mechanical Engineering Design, 10th ed., 2015, (TJ230 BUD)
- Childs, P.R.N., Mechanical Design Engineering Handbook, 2nd ed., 2019, (TJ230 CHI)
- http://en.wikipedia.org/wiki/Gear
- http://www.geartechnology.com
- <u>http://powertransmission.com</u>

Gears 1

End of Part 2

Gears 1

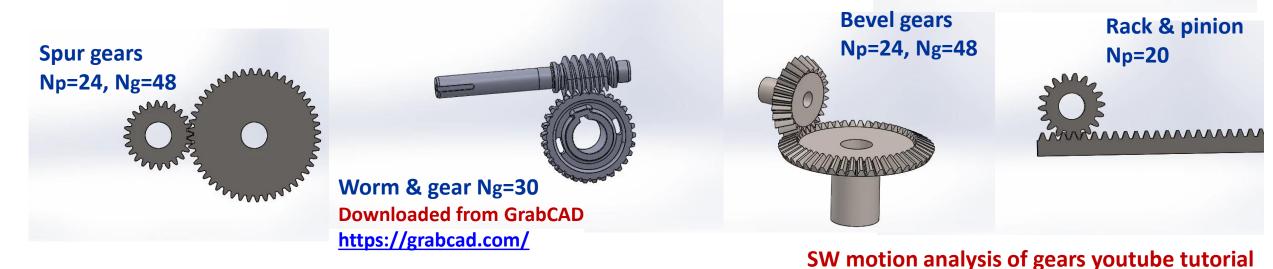
Part 3

Worked examples of Gears 1

<u>Part 3:</u>

• Evaluation of simple gear train and gear parameters as included in Gears 1 handouts available on Moodle

• Use of SW Design Library/Toolbox and external download from GrabCAD, (<u>https://grabcad.com/</u>) to build gear assembly models and animations


Worked example 2: Using SW Design Library/Toolbox to build Gear Assembly models

Gears 1 Part 3

Internal spur gears

Np=18, Ng=72

- Solidworks Design Library/Toolbox allows access of various types of gears
 - SW Mechanical Mate function allows gear ratio based motion relations to be defined.
 - SW Motion Analysis module allows simple animation and detailed motion calculations to be fully explored.

Note: SW assembly models of gears are available on Moodle <u>https://www.youtube.com/watch?v=gYJVr4QuzAE</u>

Gears 1

End of Session